• Title of article

    Multivariate rotated ARCH models

  • Author/Authors

    Noureldin، نويسنده , , Diaa and Shephard، نويسنده , , Neil C. Sheppard، نويسنده , , Kevin، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2014
  • Pages
    15
  • From page
    16
  • To page
    30
  • Abstract
    This paper introduces a new class of multivariate volatility models which is easy to estimate using covariance targeting, even with rich dynamics. We call them rotated ARCH (RARCH) models. The basic structure is to rotate the returns and then to fit them using a BEKK-type parameterization of the time-varying covariance whose long-run covariance is the identity matrix. This yields the rotated BEKK (RBEKK) model. The extension to DCC-type parameterizations is given, introducing the rotated DCC (RDCC) model. Inference for these models is computationally attractive, and the asymptotics are standard. The techniques are illustrated using data on the DJIA stocks.
  • Keywords
    RBEKK , RDCC , Multivariate volatility , Covariance targeting , Common persistence , RARCH
  • Journal title
    Journal of Econometrics
  • Serial Year
    2014
  • Journal title
    Journal of Econometrics
  • Record number

    2129489