Title of article
Nonparametric inference based on conditional moment inequalities
Author/Authors
Andrews، نويسنده , , Donald W.K. and Shi، نويسنده , , Xiaoxia، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2014
Pages
15
From page
31
To page
45
Abstract
This paper develops methods of inference for nonparametric and semiparametric parameters defined by conditional moment inequalities and/or equalities. The parameters need not be identified. Confidence sets and tests are introduced. The correct uniform asymptotic size of these procedures is established. The false coverage probabilities and power of the CS’s and tests are established for fixed alternatives and some local alternatives. Finite-sample simulation results are given for a nonparametric conditional quantile model with censoring and a nonparametric conditional treatment effect model. The recommended CS/test uses a Cramér–von-Mises-type test statistic and employs a generalized moment selection critical value.
Keywords
Asymptotic size , KERNEL , Local power , Moment inequalities , Partial identification , Nonparametric inference
Journal title
Journal of Econometrics
Serial Year
2014
Journal title
Journal of Econometrics
Record number
2129491
Link To Document