Title of article :
Estimating dynamic equilibrium models with stochastic volatility
Author/Authors :
Fernلndez-Villaverde، نويسنده , , Jesْs and Guerrَn-Quintana، نويسنده , , Pablo and Rubio-Ramيrez، نويسنده , , Juan F.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2015
Pages :
14
From page :
216
To page :
229
Abstract :
This paper develops a particle filtering algorithm to estimate dynamic equilibrium models with stochastic volatility using a likelihood-based approach. The algorithm, which exploits the structure and profusion of shocks in stochastic volatility models, is versatile and computationally tractable even in large-scale models. As an application, we use our algorithm and Bayesian methods to estimate a business cycle model of the US economy with both stochastic volatility and parameter drifting in monetary policy. Our application shows the importance of stochastic volatility in accounting for the dynamics of the data.
Keywords :
stochastic volatility , Parameter drifting , Bayesian methods , Dynamic equilibrium models
Journal title :
Journal of Econometrics
Serial Year :
2015
Journal title :
Journal of Econometrics
Record number :
2129725
Link To Document :
بازگشت