Title of article :
Time-dependent interfacial failure in metallic alloys
Author/Authors :
Pfaendtner، نويسنده , , J.A. and Muthiah، نويسنده , , R.C. and Liu، نويسنده , , C.T. and McMahon Jr، نويسنده , , C.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
11
From page :
1
To page :
11
Abstract :
Time-dependent intergranular brittle fracture has now been studied experimentally in a number of alloy systems, and the generic features are becoming clear. Mobile surface-adsorbed elements are caused to diffuse inward along grain boundaries under the influence of a tensile stress, and this can lead to sub-critical crack growth by decohesion. Oxygen is found to play this role in nickel-base superalloys and intermetallics, as well as in a precipitation-strengthened Cu–Be alloy. Crack-growth rates lie in the range 10−7–10−4 m sec−1. The same kind of cracking is found in steels treated so that free sulfur is able to segregate to the surface, as well as in Cu-Sn alloys, in which the embrittling element is surface-segregated Sn. The latter has been studied in bicrystals, and the importance of the variation in diffusivity with grain boundary structure has been documented. Hydrogen-induced cracking is a special case of an extremely mobile embrittling element and is responsible for much of the brittleness found in intermetallics. The effect of boron in retarding brittle behavior in Ni3Al has been shown to result partly from its interaction with hydrogen. This is a prime example of how segregated solutes can be used to ameliorate the tendency for diffusion-controlled brittle fracture.
Keywords :
Crack-growth , Metallic alloys , Oxygen , Time-dependent intergranular brittle fracture
Journal title :
MATERIALS SCIENCE & ENGINEERING: A
Serial Year :
1999
Journal title :
MATERIALS SCIENCE & ENGINEERING: A
Record number :
2138388
Link To Document :
بازگشت