Title of article
Using the stress–strain relationships to propose regions of low and high temperature plastic deformation in aluminum
Author/Authors
Chinh، نويسنده , , Nguyen Q. and Illy، نويسنده , , Judit and Horita، نويسنده , , Zenji and Langdon، نويسنده , , Terence G.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2005
Pages
5
From page
234
To page
238
Abstract
The plastic deformation of pure aluminum was investigated by tensile testing over a wide range of temperatures. In the region of positive work-hardening, it is shown that the stress–strain relationship can be described by an exponential-power law constitutive equation that was proposed recently and, in addition, this equation leads to a definition of the low and high temperature deformation regions. In the low temperature region, the macroscopic stress–strain behavior increases monotonously over a wide range of strain whereas at high testing temperatures the flow stress increases only up to a critical strain level. For pure aluminum, it is shown that the boundary between these two regions occurs at an homologous temperature of the order of ∼0.51 Tm where Tm is the absolute melting temperature. It is demonstrated that some important characteristics of the high temperature deformation process may be determined through the application of this new constitutive relationship.
Keywords
aluminum , CONSTITUTIVE EQUATION , Stress–strain relationship , Plastic deformation
Journal title
MATERIALS SCIENCE & ENGINEERING: A
Serial Year
2005
Journal title
MATERIALS SCIENCE & ENGINEERING: A
Record number
2147384
Link To Document