Title of article :
Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys: Part 1: Development of a mathematical model and comparison with experimental results
Author/Authors :
Zhang، نويسنده , , Haitao and Nagaumi، نويسنده , , Hiromi and Zuo، نويسنده , , Yubo and Cui، نويسنده , , Jianzhong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and low frequency electromagnetic casting (LFEC) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for calculation of the electromagnetic field and the latter for calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200 mm in diameter, during the conventional DC casting and the LFEC casting processes, respectively. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results of the LFEC process with that of the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are modified remarkably by the application of a low frequency electromagnetic field during the DC casting.
Keywords :
Low frequency electromagnetic casting , Coupled modeling , Fluid flow , solidification , Temperature field , DC casting
Journal title :
MATERIALS SCIENCE & ENGINEERING: A
Journal title :
MATERIALS SCIENCE & ENGINEERING: A