Title of article
Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part I: A theoretical framework
Author/Authors
den Dekker، نويسنده , , A.J. and Van Aert، نويسنده , , S. and van den Bos، نويسنده , , A. and Van Dyck، نويسنده , , D.، نويسنده ,
Issue Information
دوماهنامه با شماره پیاپی سال 2005
Pages
24
From page
83
To page
106
Abstract
This paper is the first part of a two-part paper on maximum likelihood (ML) estimation of structure parameters from electron microscopy images. In principle, electron microscopy allows structure determination with a precision that is orders of magnitude better than the resolution of the microscope. This requires, however, a quantitative, model-based method. In our opinion, the ML method is the most appropriate one since it has optimal statistical properties. This paper aims to provide microscopists with the necessary tools to apply this method so as to determine structure parameters as precisely as possible. It reviews the theoretical framework, including model assessment, the derivation of the ML estimator of the parameters, the limits to precision and the construction of confidence regions and intervals for ML parameter estimates. In a companion paper [Van Aert et al., Ultramicroscopy, this issue, 2005], a practical example will be worked out.
Keywords
Data processing/image processing , High-resolution transmission electron microscopy (HRTEM) , Electron microscope design and characterization
Journal title
Ultramicroscopy
Serial Year
2005
Journal title
Ultramicroscopy
Record number
2156485
Link To Document