Title of article
Determination of the chemical composition of GaNAs using STEM HAADF imaging and STEM strain state analysis
Author/Authors
Grieb، نويسنده , , Tim and Müller، نويسنده , , Knut and Fritz، نويسنده , , Rafael and Schowalter، نويسنده , , Marco and Neugebohrn، نويسنده , , Nils and Knaub، نويسنده , , Nikolai and Volz، نويسنده , , Kerstin and Rosenauer، نويسنده , , Andreas، نويسنده ,
Issue Information
دوماهنامه با شماره پیاپی سال 2012
Pages
9
From page
15
To page
23
Abstract
The nitrogen concentration of GaN 0.01 ≤ x ≤ 0.05 As 1 − x quantum wells was determined from high resolution scanning transmission electron microscopy (HRSTEM) images taken with a high-angle annular dark field (HAADF) detector. This was done by applying two independent methods: evaluation of the scattering intensity and strain state analysis. The HAADF scattering intensity was computed by multislice simulations taking into account the effect of static atomic displacements and thermal diffuse scattering. A comparison of the mean intensity per atom column on the experimental images with these simulations enabled us to generate composition maps with atomic scale resolution. STEM simulations of large supercells proved that local drops of the HAADF intensity observed close to embedded quantum wells are caused by surface strain relaxation. The same STEM images were evaluated by strain state analysis. We suggest a real space method which is not affected by fly-back errors in HRSTEM images. The results of both evaluation methods are in accordance with data obtained from X-ray diffraction measurements.
Keywords
GaNAs , HAADF , Strain state analysis , Static atomic displacements , STEM
Journal title
Ultramicroscopy
Serial Year
2012
Journal title
Ultramicroscopy
Record number
2158576
Link To Document