Title of article :
Microstructures and mechanical properties of spark plasma sintered Al–SiC composites containing high volume fraction of SiC
Author/Authors :
Zhang، نويسنده , , Zhaohui Aleck Wang، نويسنده , , Fu-Chi and Luo، نويسنده , , Jie and Lee، نويسنده , , Shu-Kui and Wang، نويسنده , , Lu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
6
From page :
7235
To page :
7240
Abstract :
Al–SiC ceramic–matrix composites containing high volume fraction of SiC were synthesized by spark plasma sintering (SPS) technique with sintering temperatures ranging from 1500 °C to 1800 °C, a pressure of 50 MPa, and a heating rate of 150 °C/min, using Al and SiC powders. Microstructures and mechanical properties of the composites sintered at different temperatures were investigated. Results reveal that the Al–SiC composites synthesized by SPS process consist of Al, SiC, Si, and Al4C3 phases. The volume fraction of Al4C3 and Si phases in the composites were reduced remarkably with increasing the sintering temperature up to 1700 °C. As a result, the composite sintered at 1800 °C provides the optimal combination of dense microstructures and excellent properties, including the relative density of 99.6%, micro-hardness of 25.5 GPa, bending strength of 451 MPa, and fracture toughness of 6.05 MPa m1/2. Compared with the monolithic SiC ceramics, both the bending strength and the fracture toughness of the composites are improved due to the dense microstructures, fine SiC grains, and infiltration of the molten Al into the interfaces of the SiC grains.
Keywords :
Al–SiC , Ceramic–matrix composites , mechanical properties , microstructure , spark plasma sintering
Journal title :
MATERIALS SCIENCE & ENGINEERING: A
Serial Year :
2010
Journal title :
MATERIALS SCIENCE & ENGINEERING: A
Record number :
2163250
Link To Document :
بازگشت