Title of article :
Weighted composition operators between growth spaces on circular and strictly convex domains
Author/Authors :
Rezaei، Shayesteh نويسنده گروه رياضي محض، واحد اليگودرز، دانشگاه آزاد اسلامي، اليگودرز، ايران Rezaei, Shayesteh
Issue Information :
دوفصلنامه با شماره پیاپی 0 سال 2015
Pages :
6
From page :
51
To page :
56
Abstract :
Let $\Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $\mathcal{H}(\Omega_X)$ denote the space of all holomorphic functions defined on $\Omega_X$. The growth space $\mathcal{A}^\omega(\Omega_X)$ is the space of all $f\in\mathcal{H}(\Omega_X)$ for which $$|f(x)|\leqslant C \omega(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C > 0$, whenever $r_{\Omega_X}$ is the Minkowski functional on $\Omega_X$ and $\omega :[0,1)\rightarrow(0,\infty)$ is a nondecreasing, continuous and unbounded function. Boundedness and compactness of weighted composition operators between growth spaces on circular and strictly convex domains were investigated.
Journal title :
Sahand Communications in Mathematical Analysis
Serial Year :
2015
Journal title :
Sahand Communications in Mathematical Analysis
Record number :
2179192
Link To Document :
بازگشت