Title of article :
Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study
Author/Authors :
Chimner، نويسنده , , Rodney A. and Cooper، نويسنده , , David J.، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2003
Abstract :
We quantified the relationship between water table position and CO2 emissions by manipulating water table levels for two summers in microcosms installed in a Colorado subalpine fen. Water levels were manipulated in the microcosms by either adding water or removing water and ranged from +10 cm above the soil surface to 40 cm below the soil surface, with ambient water levels in the fen averaging +3 and +2 cm above the soil surface during 1998 and 1999, respectively. Microcosm installation had no significant effect on CO2 efflux; the 2 year means of natural and reference CO2 efflux were 205.4 and 213.9 mg CO2-C m−2 h−1, respectively (p=0.80). Mean CO2 emissions were lowest at the highest water tables (water +6 to +10 cm above the soil surface), averaging 133.8 mg CO2-C m−2 h−1, increased to 231.3 mg CO2-C m−2 h−1 when the water table was +1 to +5 cm above the soil surface and doubled to 453.7 mg CO2-C m−2 h−1, when the water table was 0–5 cm below the soil surface. However, further lowering of the water table had little additional effect on CO2 emissions, which averaged 470.3 and 401.1 mg CO2-C m−2 h−1 when the water table was 6–10 cm, and 11–40 cm beneath the soil surface, respectively. The large increase in CO2 emissions as we experimentally lowered the water table beneath the soil surface, coupled with no increase in CO2 emissions as we furthered lowered water tables beneath the soil surface, suggest the presence of an easily oxidized labile carbon pool near the soil surface.
Keywords :
microcosm , Water table , Peatland , Carbon dioxide , FEN
Journal title :
Soil Biology and Biochemistry
Journal title :
Soil Biology and Biochemistry