• Title of article

    Soil carbon saturation: Evaluation and corroboration by long-term incubations

  • Author/Authors

    Stewart ، نويسنده , , Catherine E. and Paustian، نويسنده , , Keith and Conant، نويسنده , , Richard T. and Plante، نويسنده , , Alain F. and Six، نويسنده , , Johan، نويسنده ,

  • Issue Information
    ماهنامه با شماره پیاپی سال 2008
  • Pages
    10
  • From page
    1741
  • To page
    1750
  • Abstract
    Although current assessments of agricultural management practices on soil organic C (SOC) dynamics are usually conducted without any explicit consideration of limits to soil C storage, it has been hypothesized that the SOC pool has an upper, or saturation limit with respect to C input levels at steady state. Agricultural management practices that increase C input levels over time produce a new equilibrium soil C content. However, multiple C input level treatments that produce no increase in SOC stocks at equilibrium show that soils have become saturated with respect to C inputs. SOC storage of added C input is a function of how far a soil is from saturation level (saturation deficit) as well as C input level. We tested experimentally if C saturation deficit and varying C input levels influenced soil C stabilization of added 13C in soils varying in SOC content and physiochemical characteristics. We incubated for 2.5 years soil samples from seven agricultural sites that were closer to (i.e., A-horizon) or further from (i.e., C-horizon) their C saturation limit. At the initiation of the incubations, samples received low or high C input levels of 13C-labeled wheat straw. We also tested the effect of Ca addition and residue quality on a subset of these soils. We hypothesized that the proportion of C stabilized would be greater in samples with larger C saturation deficits (i.e., the C- versus A-horizon samples) and that the relative stabilization efficiency (i.e., ΔSOC/ΔC input) would decrease as C input level increased. We found that C saturation deficit influenced the stabilization of added residue at six out of the seven sites and C addition level affected the stabilization of added residue in four sites, corroborating both hypotheses. Increasing Ca availability or decreasing residue quality had no effect on the stabilization of added residue. The amount of new C stabilized was significantly related to C saturation deficit, supporting the hypothesis that C saturation influenced C stabilization at all our sites. Our results suggest that soils with low C contents and degraded lands may have the greatest potential and efficiency to store added C because they are further from their saturation level.
  • Keywords
    Soil carbon sequestration , Soil organic matter stabilization , Agroecosystem , soil incubation , 13C labeling , Soil carbon saturation
  • Journal title
    Soil Biology and Biochemistry
  • Serial Year
    2008
  • Journal title
    Soil Biology and Biochemistry
  • Record number

    2183755