Title of article :
A probabilistic walk up power laws
Author/Authors :
Eliazar، نويسنده , , Iddo and Klafter، نويسنده , , Joseph، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
33
From page :
143
To page :
175
Abstract :
We establish a path leading from Pareto’s law to anomalous diffusion, and present along the way a panoramic overview of power-law statistics. Pareto’s law is shown to universally emerge from “Central Limit Theorems” for rank distributions and exceedances, and is further shown to be a finite-dimensional projection of an infinite-dimensional underlying object — Pareto’s Poisson process. The fundamental importance and centrality of Pareto’s Poisson process is described, and we demonstrate how this process universally generates an array of anomalous diffusion statistics characterized by intrinsic power-law structures: sub-diffusion and super-diffusion, Lévy laws and the “Noah effect”, long-range dependence and the “Joseph effect”, 1 / f noises, and anomalous relaxation.
Keywords :
Lorenz curve , Exceedances , Central limit theorems , Poisson processes , anomalous diffusion , Sub-diffusion , Super-diffusion , Noah effect , Joseph effect , long-range dependence , 1 , Power-law statistics , Pareto’s law , Rank distributions , Pareto’s Poisson process , Lévy laws
Journal title :
Physics Reports
Serial Year :
2012
Journal title :
Physics Reports
Record number :
2191910
Link To Document :
بازگشت