Author/Authors :
Wang، نويسنده , , Jingbo B. Wang، نويسنده , , Yi and Gonzalez-Diaz، نويسنده , , D. and Chen، نويسنده , , Huangshan and Fan، نويسنده , , Xingming and Li، نويسنده , , Yuanjing and Cheng، نويسنده , , Jianping and Kaspar، نويسنده , , Marcus and Kotte، نويسنده , , Roland and Laso Garcia، نويسنده , , Alejandro and Naumann، نويسنده , , Lothar and Stach، نويسنده , , Daniel and Wendisch، نويسنده , , Christian and Wüstenfeld، نويسنده , , Jِrn، نويسنده ,
Abstract :
We show how the high charged-particle flux (1–20 kHz/cm2) expected over the 150 m2 large time-of-flight wall of the future Compressed Baryonic Matter experiment (CBM) at FAIR can be realistically handled with Multi-gap Resistive Plate Chambers (MRPCs). This crucial 100-fold increase of the chamber rate capability, as compared to that of standard MRPCs presently employed in experiments resorting to sub-100 ps timing, has been achieved thanks to the development of a new type of low-resistive doped glass. Following the encouraging results previously obtained with small counters, two types of modules (active area: ∼150 cm2) have been built at Tsinghua University with the new material. The measurements conveyed in this work, obtained with a quasi- minimum ionizing electron beam (γβ≥3), prove their suitability as the building blocks of the present hadron-identification concept of the CBM experiment. Namely, they provide a time resolution better than 80 ps and an efficiency above 90% at a particle flux well in excess of 20 kHz/cm2 (up to 35–60 kHz/cm2), being at the core of a modular concept that is easily scalable. Recent measurements of the electrical and mechanical properties of this new material, together with its long-term behavior, are shortly summarized.
Keywords :
MRPC , High rate , TOF , Low-resistive glass , Rate capability , CBM