Author/Authors :
Mortreau، نويسنده , , Patricia and Berndt، نويسنده , , Reinhard، نويسنده ,
Abstract :
Room-temperature CdZnTe and CdTe detectors have been routinely used in the field of Nuclear Safeguards for many years [Ivanov et al., Development of large volume hemispheric CdZnTe detectors for use in safeguards applications, ESARDA European Safeguards Research and Development Association, Le Corum, Montpellier, France, 1997, p. 447; Czock and Arlt, Nucl. Instr. and Meth. A 458 (2001) 175; Arlt et al., Nucl. Instr. and Meth. A 428 (1999) 127; Lebrun et al., Nucl. Instr. and Meth. A 448 (2000) 598; Aparo et al., Development and implementation of compact gamma spectrometers for spent fuel measurements, in: Proceedings, 21st Annual ESARDA, 1999; Arlt and Rudsquist, Nucl. Instr. and Meth. A 380 (1996) 455; Khusainov et al., High resolution pin type CdTe detectors for the verification of nuclear material, in: Proceedings, 17th Annual ESARDA European Safeguards Research and Development Association, 1995; Mortreau and Berndt, Nucl. Instr. and Meth. A 458 (2001) 183; Ruhter et al., UCRL-JC-130548, 1998; Abbas et al., Nucl. Instr. and Meth. A 405 (1998) 153; Ruhter and Gunnink, Nucl. Instr. and Meth. A 353 (1994) 716]. Due to their performance and small size, they are ideal detectors for hand-held applications such as verification of spent and fresh fuel, U/Pu attribute tests as well as for the determination of 235U enrichment.
mispherical CdZnTe type produced by RITEC (Riga, Latvia) [Ivanov et al., 1997] is the most widely used detector in the field of inspection. With volumes ranging from 2 to 1500 mm3, their spectral performance is such that the use of electronic processing to correct the pulse shape is not required.
aper reports on the work carried out with a large volume (15×15×7.5 mm3) and high efficiency hemispherical CdZnTe detector for the determination of 235U enrichment. The measurements were made with certified uranium samples whose enrichment ranging from 0.31% to 92.42%, cover the whole range of in-field measurement conditions. The interposed shield thickness varied from 2 mm of aluminium to 16 mm of steel.
sults showed that, despite the detector instability, it is possible to achieve a good precision within a short counting time and for low enriched uranium, even when thick shielding is interposed between the source and the detector.
Keywords :
Nuclear safeguards , Nuclear material , Room-temperature semiconductor gamma-ray detectors , Gamma Spectrometry , CdTeZn detectors , Non-destructive assay , Uranium enrichment