• Title of article

    Two new three and four parametric with memory methods for solving nonlinear ‎equations‎

  • Author/Authors

    Lotfi، T. نويسنده Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran. , , Assari، P. نويسنده Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., Tehran 15914, Iran ,

  • Issue Information
    فصلنامه با شماره پیاپی 0 سال 2015
  • Pages
    8
  • From page
    269
  • To page
    276
  • Abstract
    In this study, based on the optimal free derivative without memory methods proposed by Cordero et al. [A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa, Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation, Mathematical and Computer Modeling. 57 (2013) 1950-1956], we develop two new iterative with memory methods for solving a nonlinear equation. The first has two steps with three self-accelerating parameters, and the second has three steps with four self-accelerating parameters. These parameters are calculated using information from the current and previous iteration so that the presented methods may be regarded as the with memory methods. The self-accelerating parameters are computed applying Newtonʹs interpolatory polynomials. Moreover, they use three and four functional evaluations per iteration and corresponding R-orders of convergence are increased from 4 ad 8 to 7.53 and 15.51, respectively. It means that, without any new function calculations, we can improve convergence order by 93% and 96%. We provide rigorous theories along with some numerical test problems to confirm theoretical results and high computational efficiency.
  • Journal title
    International Journal of Industrial Mathematics(IJIM)
  • Serial Year
    2015
  • Journal title
    International Journal of Industrial Mathematics(IJIM)
  • Record number

    2201573