Author/Authors :
Conti، نويسنده , , V. and Bartesaghi، نويسنده , , G. and Bolognini، نويسنده , , D. and Mascagna، نويسنده , , V. and Perboni، نويسنده , , C. and Prest، نويسنده , , M. and Scazzi، نويسنده , , S. and Mozzanica، نويسنده , , A. and Cappelletti، نويسنده , , P. and Frigerio، نويسنده , , M. and Gelosa، نويسنده , , S. and Monti، نويسنده , , A. and Ostinelli، نويسنده , , A. L. Giannini، نويسنده , , G. and Vallazza، نويسنده , , E.، نويسنده ,
Abstract :
Boron Neutron Capture Therapy (BNCT) is a therapeutic technique exploiting the release of dose inside the tumour cell after a fission of a 10B nucleus following the capture of a thermal neutron. BNCT could be the treatment for extended tumors (liver, stomach, lung), radio-resistant ones (melanoma) or tumours surrounded by vital organs (brain). The application of BNCT requires a high thermal neutron flux ( > 5 × 10 8 n cm - 2 s - 1 ) with the correct energy spectrum (neutron energy < 10 keV ), two requirements that for the moment are fulfilled only by nuclear reactors. The INFN PhoNeS (Photo Neutron Source) project is trying to produce such a neutron beam with standard radiotherapy Linacs, maximizing with a dedicated photo-neutron converter the neutrons produced by Giant Dipole Resonance by a high energy ( > 8 MeV ) photon beam. In this framework, we have developed a real-time detector to measure the thermal neutron time-of -flight to compute the flux and the energy spectrum. Given the pulsed nature of Linac beams, the detector is a single neutron counting system made of a scintillator detecting the photon emitted after the neutron capture by the hydrogen nuclei. The scintillator signal is sampled by a dedicated FPGA clock thus obtaining the exact arrival time of the neutron itself.
per will present the detector and its electronics, the feasibility measurements with a Varian Clinac 1800/2100CD and comparison with a Monte Carlo simulation.