Title of article :
High-precision position estimation in PET using artificial neural networks
Author/Authors :
Mateo، نويسنده , , F. and Aliaga، نويسنده , , R.J. and Ferrando، نويسنده , , N. and Martيnez، نويسنده , , J.D. and Herrero، نويسنده , , V. and Lerche، نويسنده , , Ch.W. and Colom، نويسنده , , R.J. and Monzَ، نويسنده , , J.M. and Sebastiل، نويسنده , , A. and Gadea Borrell، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
4
From page :
366
To page :
369
Abstract :
Traditionally, the most popular technique to predict the impact position of gamma photons on a PET detector has been Angerʹs logic. However, it introduces nonlinearities that compress the light distribution, reducing the useful field of view and the spatial resolution, especially at the edges of the scintillator crystal. In this work, we make use of neural networks to address a bias-corrected position estimation from real stimulus obtained from a 2D PET system setup. The preprocessing and data acquisition were performed by separate custom boards, especially designed for this application. The results show that neural networks yield a more uniform field of view while improving the systematic error and the spatial resolution. Therefore, they stand as a better performing and readily available alternative to classic positioning methods.
Keywords :
Incidence position estimation , Angerיs logic , multi-layer perceptron , Artificial neural networks , Positron emission tomography
Journal title :
Nuclear Instruments and Methods in Physics Research Section A
Serial Year :
2009
Journal title :
Nuclear Instruments and Methods in Physics Research Section A
Record number :
2211258
Link To Document :
بازگشت