Title of article :
Empirical Bayes estimation of in positive exponential families
Author/Authors :
Liang، نويسنده , , TaChen Liang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
14
From page :
411
To page :
424
Abstract :
Consider a positive exponential family having probability density f ( y | θ ) = u ( y ) β ( θ ) exp ( - y / θ ) , y > 0 , θ > 0 . With suitable values of b and c, the parameter c θ b may denote the mean, the variance or the hazard rate of the probability distribution. In this paper, we study the empirical Bayes estimation of the parameter θ b for any fixed real value b. Two empirical Bayes estimators ϕ ˜ n and ϕ n * are constructed according to the prior information about the parameter space Ω = ( 0 , ∞ ) or Ω = ( θ 1 , θ 2 ) , where 0 < θ 1 < θ 2 < ∞ are known constants. The asymptotic optimality of the proposed empirical Bayes estimators is investigated. The rates of convergence of the associated regrets are established. It has been shown that under certain conditions, ϕ ˜ n is asymptotically optimal, having rates of convergence O ( ( ln n ) 2 ( λ s - 2 ) / λ s / n ( λ s - 2 ) / λ s ) or O ( ( ln 2 n ) ( 1 - b ) λ - 1 / 2 s / n ( λ s - 2 ) / 2 s ) , depending on b > 0 or b < 0 where s > 2 and λ is positive number such that 2 / s < λ < 2 ( 1 - 1 / s ) ; and ϕ n * is asymptotically optimal, having rates of convergence O ( ln 2 n / n ) or O ( ( ln n ) 2 ( 1 - b ) + 1 / n ) , depending on b > 0 or b < 0 .
Keywords :
Asymptotically optimal , Empirical Bayes , Positive exponential family , Regret , Rate of convergence
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2009
Journal title :
Journal of Statistical Planning and Inference
Record number :
2219801
Link To Document :
بازگشت