Title of article :
The stochastic approximation method for the estimation of a multivariate probability density
Author/Authors :
Mokkadem، نويسنده , , Abdelkader and Pelletier، نويسنده , , Mariane and Slaoui، نويسنده , , Yousri، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
20
From page :
2459
To page :
2478
Abstract :
We apply the stochastic approximation method to construct a large class of recursive kernel estimators of a probability density, including the one introduced by Hall and Patil [1994. On the efficiency of on-line density estimators. IEEE Trans. Inform. Theory 40, 1504–1512]. We study the properties of these estimators and compare them with Rosenblattʹs nonrecursive estimator. It turns out that, for pointwise estimation, it is preferable to use the nonrecursive Rosenblattʹs kernel estimator rather than any recursive estimator. A contrario, for estimation by confidence intervals, it is better to use a recursive estimator rather than Rosenblattʹs estimator.
Keywords :
Density estimation , Stochastic approximation algorithm
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2009
Journal title :
Journal of Statistical Planning and Inference
Record number :
2220110
Link To Document :
بازگشت