• Title of article

    Robust estimation in long-memory processes under additive outliers

  • Author/Authors

    Roger Valle-Molinares، نويسنده , , Fabio Fajardo and Reisen، نويسنده , , Valdério Anselmo and Cribari-Neto، نويسنده , , Francisco، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    15
  • From page
    2511
  • To page
    2525
  • Abstract
    In this paper, we introduce an alternative semiparametric estimator of the fractional differencing parameter in ARFIMA models which is robust against additive outliers. The proposed estimator is a variant of the GPH estimator [Geweke, J., Porter-Hudak, S., 1983. The estimation and application of long memory time series model. Journal of Time Series Analysis 4, 221–238]. In particular, we use the robust sample autocorrelations of Ma, Y. and Genton, M. [2000. Highly robust estimation of the autocovariance function. Journal of Time Series Analysis 21, 663–684] to obtain an estimator for the spectral density of the process. Numerical results show that the estimator we propose for the differencing parameter is robust when the data contain additive outliers.
  • Keywords
    Additive outliers , ARFIMA model , Robustness , Long-memory
  • Journal title
    Journal of Statistical Planning and Inference
  • Serial Year
    2009
  • Journal title
    Journal of Statistical Planning and Inference
  • Record number

    2220120