Title of article
Robust estimation in long-memory processes under additive outliers
Author/Authors
Roger Valle-Molinares، نويسنده , , Fabio Fajardo and Reisen، نويسنده , , Valdério Anselmo and Cribari-Neto، نويسنده , , Francisco، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
15
From page
2511
To page
2525
Abstract
In this paper, we introduce an alternative semiparametric estimator of the fractional differencing parameter in ARFIMA models which is robust against additive outliers. The proposed estimator is a variant of the GPH estimator [Geweke, J., Porter-Hudak, S., 1983. The estimation and application of long memory time series model. Journal of Time Series Analysis 4, 221–238]. In particular, we use the robust sample autocorrelations of Ma, Y. and Genton, M. [2000. Highly robust estimation of the autocovariance function. Journal of Time Series Analysis 21, 663–684] to obtain an estimator for the spectral density of the process. Numerical results show that the estimator we propose for the differencing parameter is robust when the data contain additive outliers.
Keywords
Additive outliers , ARFIMA model , Robustness , Long-memory
Journal title
Journal of Statistical Planning and Inference
Serial Year
2009
Journal title
Journal of Statistical Planning and Inference
Record number
2220120
Link To Document