Title of article :
Poisson approximation of the mixed Poisson distribution with infinitely divisible mixing law
Author/Authors :
Vaggelatou، نويسنده , , Eutichia Vaggelatou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
11
From page :
128
To page :
138
Abstract :
In this work, explicit upper bounds are provided for the Kolmogorov and total variation distances between the mixed Poisson distribution with infinitely divisible mixing law and the Poisson distribution. If μ and σ 2 are the mean and variance of the mixing distribution respectively, then the bounds provided here are asymptotically equal to σ 2 / ( 2 μ 2 π e ) and σ 2 / ( μ 2 π e ) for the Kolmogorov and the total variation distance respectively when μ → ∞ and σ 2 is fixed. Finally, as an application, the Poisson approximation of the negative Binomial distribution is considered.
Keywords :
Infinite divisibility , Mixed Poisson distribution , Negative binomial distribution , Kolmogorov distance , Total variation distance , Zolotarevיs ideal metric , Convex order , Poisson approximation
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2010
Journal title :
Journal of Statistical Planning and Inference
Record number :
2220431
Link To Document :
بازگشت