• Title of article

    The second order ancillary is rotation based

  • Author/Authors

    Staicu، نويسنده , , Ana-Maria and Fraser، نويسنده , , Donald A.S.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    6
  • From page
    831
  • To page
    836
  • Abstract
    This paper concerns the approximate ancillary needed for higher order asymptotic likelihood inference. The existence of an exact or approximate ancillary is the key to such inference. The exact ancillary is, however, only available for transformation model and an approximate ancillary is typically very difficult to find. Fraser (1988) revealed that the high order inference can be obtained by using only the tangent directions to the second order ancillary, thus avoiding its specification. The present work discuses the second order ancillary that has the observed contour tangent to the sensitivity directions v = ∂ y / ∂ θ | { y 0 ; θ ^ ( y 0 ) } corresponding to a pivot and derived by keeping the pivotal variable fixed at the observed fitted value; these directions are always available (Fraser and Reid, 1995, 2001). For scalar parameter case, such an approximate ancillary is well defined and can be described as a rotation. Our approach provides insights into the second order ancillary outlined by the sensitivity directions in the vector parameter case.
  • Keywords
    Sensitivity directions , Third order inference , Conditional likelihood , Second order ancillary , Pivotal quantity
  • Journal title
    Journal of Statistical Planning and Inference
  • Serial Year
    2010
  • Journal title
    Journal of Statistical Planning and Inference
  • Record number

    2220525