Title of article :
Nonlinear regression modeling via the lasso-type regularization
Author/Authors :
Tateishi، نويسنده , , Shohei and Matsui، نويسنده , , Hidetoshi and Konishi، نويسنده , , Sadanori، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
We consider the problem of constructing nonlinear regression models with Gaussian basis functions, using lasso regularization. Regularization with a lasso penalty is an advantageous in that it estimates some coefficients in linear regression models to be exactly zero. We propose imposing a weighted lasso penalty on a nonlinear regression model and thereby selecting the number of basis functions effectively. In order to select tuning parameters in the regularization method, we use a deviance information criterion proposed by Spiegelhalter et al. (2002), calculating the effective number of parameters by Gibbs sampling. Simulation results demonstrate that our methodology performs well in various situations.
Keywords :
Bayes approach , Basis expansion , information criterion , Lasso , Nonlinear regression , regularization
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference