Title of article :
Robust nonparametric estimation for spatial regression
Author/Authors :
Gheriballah، نويسنده , , Abdelkader and Laksaci، نويسنده , , Ali and Rouane، نويسنده , , Rachida، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
In this paper, we investigate a nonparametric robust estimation for spatial regression. More precisely, given a strictly stationary random field Z i = ( X i , Y i ) i ∈ N N N ≥ 1 , we consider a family of robust nonparametric estimators for a regression function based on the kernel method. Under some general mixing assumptions, the almost complete consistency and the asymptotic normality of these estimators are obtained. A robust procedure to select the smoothing parameter adapted to the spatial data is also discussed.
Keywords :
robust estimation , Asymptotic distribution , Almost complete convergence , Nonparametric regression , Random field , Bandwidth , Kernel estimate
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference