Title of article :
Density estimation using asymmetric kernels and Bayes bandwidths with censored data
Author/Authors :
Kuruwita، نويسنده , , C.N. and Kulasekera، نويسنده , , K.B. and Padgett، نويسنده , , W.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
We propose a modification to the regular kernel density estimation method that use asymmetric kernels to circumvent the spill over problem for densities with positive support. First a pivoting method is introduced for placement of the data relative to the kernel function. This yields a strongly consistent density estimator that integrates to one for each fixed bandwidth in contrast to most density estimators based on asymmetric kernels proposed in the literature. Then a data-driven Bayesian local bandwidth selection method is presented and lognormal, gamma, Weibull and inverse Gaussian kernels are discussed as useful special cases. Simulation results and a real-data example illustrate the advantages of the new methodology.
Keywords :
Kernel density estimation , Pivoting , Bayesian bandwidths , Censored data
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference