Title of article :
Block thresholding wavelet regression using SCAD penalty
Author/Authors :
Park، نويسنده , , Cheolwoo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
This paper concerns wavelet regression using a block thresholding procedure. Block thresholding methods utilize neighboring wavelet coefficients information to increase estimation accuracy. We propose to construct a data-driven block thresholding procedure using the smoothly clipped absolute deviation (SCAD) penalty. A simulation study demonstrates competitive finite sample performance of the proposed estimator compared to existing methods. We also show that the proposed estimator achieves optimal convergence rates in Besov spaces.
Keywords :
Besov space , Block thresholding , Convergence rates , Wavelet regression , Smoothly clipped absolute deviation penalty
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference