Title of article :
Bootstrap confidence regions for the planar mean shape
Author/Authors :
Amaral، نويسنده , , Getulio J.A. and Dryden، نويسنده , , Ian L. and Patrangenaru، نويسنده , , Vic and Wood، نويسنده , , Andrew T.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
We consider bootstrap methods for constructing confidence regions for the mean shape of objects specified by labelled landmarks in two dimensions. Two statistics are considered: a pivotal statistic, T, derived using matrix perturbation arguments; and a Hotelling-type statistic, H , based on partial Procrustes tangent projections of the observations. We give a rigorous proof, under weak conditions, that the null asymptotic distribution of T is χ 2 . Simulation results show that (i) the confidence region procedure obtained by bootstrapping each statistic is clearly superior to the corresponding ‘tabular’ procedure; and (ii) the pivotal T bootstrap confidence regions generally have smaller coverage error than the Hotelling bootstrap confidence regions, especially for distributions with low concentration.
Keywords :
Hotelling statistic , Partial procrustes tangent coordinates , Procrustes mean shape , Pivotal statistic
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference