Title of article :
Rate-optimal nonparametric estimation in classical and Berkson errors-in-variables problems
Author/Authors :
Delaigle، نويسنده , , Aurore and Meister، نويسنده , , Alexander، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
13
From page :
102
To page :
114
Abstract :
We consider nonparametric estimation of a regression curve when the data are observed with Berkson errors or with a mixture of classical and Berkson errors. In this context, other existing nonparametric procedures can either estimate the regression curve consistently on a very small interval or require complicated inversion of an estimator of the Fourier transform of a nonparametric regression estimator. We introduce a new estimation procedure which is simpler to implement, and study its asymptotic properties. We derive convergence rates which are faster than those previously obtained in the literature, and we prove that these rates are optimal. We suggest a data-driven bandwidth selector and apply our method to some simulated examples.
Keywords :
Bandwidth , Deconvolution , Local polynomial , Measurement error , Kernel methods , Minimax convergence rates , Nonparametric regression
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2011
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221065
Link To Document :
بازگشت