Title of article :
A note on the generalized degrees of freedom under the L1 loss function
Author/Authors :
Gao، نويسنده , , Xiaoli and Fang، نويسنده , , Yixin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
10
From page :
677
To page :
686
Abstract :
Generalized degrees of freedom measure the complexity of a modeling procedure; a modeling procedure is a combination of model selection and model fitting. In this manuscript, we consider two definitions of generalized degrees of freedom for a modeling procedure under the L1 loss function, and investigate the connections between those two definitions. We also propose the extended Akaike information criterion, the adaptive model selection, and the extended generalized cross-validation under the L1 loss function. Finally, we extend the results to M-estimation.
Keywords :
Least absolute deviations , Modeling procedure , Adaptive model selection , Covariance penalty , Generalized cross-validation , degrees of freedom
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2011
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221156
Link To Document :
بازگشت