Title of article :
Spline approximation of a random process with singularity
Author/Authors :
Abramowicz، نويسنده , , K. and Seleznjev، نويسنده , , O.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
10
From page :
1333
To page :
1342
Abstract :
Let a continuous random process X defined on [0,1] be ( m + β ) ‐smooth , 0 ≤ m , 0 < β ≤ 1 , in quadratic mean for all t > 0 and have an isolated singularity point at t=0. In addition, let X be locally like a m-fold integrated β ‐fractional Brownian motion for all nonsingular points. We consider approximation of X by piecewise Hermite interpolation splines with n free knots (i.e., a sampling design, a mesh). The approximation performance is measured by mean errors (e.g., integrated or maximal quadratic mean errors). We construct a sequence of sampling designs with asymptotic approximation rate n − ( m + β ) for the whole interval.
Keywords :
random process , approximation , Sampling design , Hermite splines
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2011
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221259
Link To Document :
بازگشت