Title of article :
Particle predictive control
Author/Authors :
de Villiers، نويسنده , , J.P. and Godsill، نويسنده , , S.J and Singh، نويسنده , , S.S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
11
From page :
1753
To page :
1763
Abstract :
This work explores the use of sequential and batch Monte Carlo techniques to solve the nonlinear model predictive control (NMPC) problem with stochastic system dynamics and noisy state observations. This is done by treating the state inference and control optimisation problems jointly as a single artificial inference problem on an augmented state-control space. The methodology is demonstrated on the benchmark car-up-the-hill problem as well as an advanced F-16 aircraft terrain following problem.
Keywords :
Model predictive control , stochastic control , moving horizon control , Markov chain Monte Carlo , SAME algorithm , particle filter
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2011
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221320
Link To Document :
بازگشت