Title of article :
Quantile inference for heteroscedastic regression models
Author/Authors :
Chan، نويسنده , , Ngai Hang and Zhang، نويسنده , , Rong-Mao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
2079
To page :
2090
Abstract :
Consider the nonparametric heteroscedastic regression model Y = m ( X ) + σ ( X ) ɛ , where m ( · ) is an unknown conditional mean function and σ ( · ) is an unknown conditional scale function. In this paper, the limit distribution of the quantile estimate for the scale function σ ( X ) is derived. Since the limit distribution depends on the unknown density of the errors, an empirical likelihood ratio statistic based on quantile estimator is proposed. This statistics is used to construct confidence intervals for the variance function. Under certain regularity conditions, it is shown that the quantile estimate of the scale function converges to a Brownian motion and the empirical likelihood ratio statistic converges to a chi-squared random variable. Simulation results demonstrate the superiority of the proposed method over the least squares procedure when the underlying errors have heavy tails.
Keywords :
Heteroscedastic regression , Empirical likelihood , Quantile regression , Local linear estimate
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2011
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221390
Link To Document :
بازگشت