• Title of article

    Quantile inference for heteroscedastic regression models

  • Author/Authors

    Chan، نويسنده , , Ngai Hang and Zhang، نويسنده , , Rong-Mao، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2011
  • Pages
    12
  • From page
    2079
  • To page
    2090
  • Abstract
    Consider the nonparametric heteroscedastic regression model Y = m ( X ) + σ ( X ) ɛ , where m ( · ) is an unknown conditional mean function and σ ( · ) is an unknown conditional scale function. In this paper, the limit distribution of the quantile estimate for the scale function σ ( X ) is derived. Since the limit distribution depends on the unknown density of the errors, an empirical likelihood ratio statistic based on quantile estimator is proposed. This statistics is used to construct confidence intervals for the variance function. Under certain regularity conditions, it is shown that the quantile estimate of the scale function converges to a Brownian motion and the empirical likelihood ratio statistic converges to a chi-squared random variable. Simulation results demonstrate the superiority of the proposed method over the least squares procedure when the underlying errors have heavy tails.
  • Keywords
    Heteroscedastic regression , Empirical likelihood , Quantile regression , Local linear estimate
  • Journal title
    Journal of Statistical Planning and Inference
  • Serial Year
    2011
  • Journal title
    Journal of Statistical Planning and Inference
  • Record number

    2221390