Title of article :
Non-minimaxity of linear combinations of restricted location estimators and related problems
Author/Authors :
Kubokawa، نويسنده , , Tatsuya and Strawderman، نويسنده , , William E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
15
From page :
2141
To page :
2155
Abstract :
The estimation of a linear combination of several restricted location parameters is addressed from a decision-theoretic point of view. Although the corresponding linear combination of the unbiased estimators is minimax under the restricted problem, it has a drawback of taking values outside the restricted parameter space. Thus, it is reasonable to use the linear combination of the restricted estimators such as maximum likelihood or truncated estimators. In this paper, a necessary and sufficient condition for such restricted estimators to be minimax is derived, and it is shown that the restricted estimators are not minimax when the number of the location parameters is large. The condition for minimaxity is examined for some specific distributions. Finally, similar problems of estimating the product and sum of the restricted scale parameters are studied, and it is shown that analogous non-dominance properties appear when the number of the scale parameters is large.
Keywords :
Linear combination , Location parameter , Restricted parameter , Maximum likelihood estimator , Truncated estimator , Scale parameter , restricted estimator , decision theory
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2011
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221400
Link To Document :
بازگشت