Title of article :
On the mean residual life order of convolutions of independent uniform random variables
Author/Authors :
Khaledi، نويسنده , , Baha-Eldin and Amiri، نويسنده , , Leila، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
9
From page :
3716
To page :
3724
Abstract :
Let X λ i , i = 1 , … , n be n independent random variables such that X λ i has uniform distribution over the interval ( 0 , 1 / λ i ) , i = 1 , … , n . It is proved that if ( λ 1 , … , λ n ) is larger than ( λ 1 ⁎ , … , λ n ⁎ ) according to reciprocal order, then ∑ i = 1 n X λ i is larger than ∑ i = 1 n X λ i ⁎ according to mean residual life order as well as increasing convex order. This result gives convenient bounds for mean residual life function of ∑ i = 1 n X λ i in terms of harmonic mean of λ i ʹs. It is shown that these bounds are sharper than those given in the literature in terms of geometric mean and arithmetic mean of λ i ʹs.
Keywords :
p-Larger order , Reciprocal majorization , Convex transform order , Dispersive order , Hazard rate order , Schur functions and star order , Mean residual function , Log-concave density , majorization , Right spread order
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2011
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221656
Link To Document :
بازگشت