Title of article :
A cautionary note on generalized linear models for covariance of unbalanced longitudinal data
Author/Authors :
Huang، نويسنده , , Jianhua Z. and Chen، نويسنده , , Min and Maadooliat، نويسنده , , Mehdi and Pourahmadi، نويسنده , , Mohsen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
9
From page :
743
To page :
751
Abstract :
Missing data in longitudinal studies can create enormous challenges in data analysis when coupled with the positive-definiteness constraint on a covariance matrix. For complete balanced data, the Cholesky decomposition of a covariance matrix makes it possible to remove the positive-definiteness constraint and use a generalized linear model setup to jointly model the mean and covariance using covariates (Pourahmadi, 2000). However, this approach may not be directly applicable when the longitudinal data are unbalanced, as coherent regression models for the dependence across all times and subjects may not exist. Within the existing generalized linear model framework, we show how to overcome this and other challenges by embedding the covariance matrix of the observed data for each subject in a larger covariance matrix and employing the familiar EM algorithm to compute the maximum likelihood estimates of the parameters and their standard errors. We illustrate and assess the methodology using real data sets and simulations.
Keywords :
Cholesky decomposition , Missing data , Joint mean–covariance modeling
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2012
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221794
Link To Document :
بازگشت