Title of article :
Pitman closest equivariant estimators and predictors under location–scale models
Author/Authors :
Zhou، نويسنده , , Haojin and Nayak، نويسنده , , Tapan K.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
11
From page :
1367
To page :
1377
Abstract :
For location, scale and location–scale models, which are common in practical applications, we derive optimum equivariant estimators and predictors using the Pitman closeness criterion. This approach is very robust with respect to the choice of the loss function as it only requires the loss function to be strictly monotone. We also prove that, in general, the Pitman closeness comparison of any two equivariant predictors depends on the unknown parameter only through a maximal invariant, and hence it is independent of the parameter when the parameter space is transitive. We present several examples illustrating applications of our theoretical results.
Keywords :
Invariance , Loss function , maximal invariant , Quantile , transformation group
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2012
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221895
Link To Document :
بازگشت