Title of article :
Online learning for quantile regression and support vector regression
Author/Authors :
Hu، نويسنده , , Ting-Fu Xiang، نويسنده , , Dao-Hong and Zhou، نويسنده , , Ding-Xuan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
We consider for quantile regression and support vector regression a kernel-based online learning algorithm associated with a sequence of insensitive pinball loss functions. Our error analysis and derived learning rates show quantitatively that the statistical performance of the learning algorithm may vary with the quantile parameter τ . In our analysis we overcome the technical difficulty caused by the varying insensitive parameter introduced with a motivation of sparsity.
Keywords :
Quantile regression , Insensitive pinball loss , Online learning , Reproducing kernel Hilbert space , Error analysis , Support vector regression
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference