Title of article :
Information dependency: Strong consistency of Darbellay–Vajda partition estimators
Author/Authors :
Le، نويسنده , , Trung Kien، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
The Darbellay–Vajda partition scheme is a well known method to estimate the information dependency. This estimator belongs to a class of data-dependent partition estimators. We would like to prove that with some simple conditions, the Darbellay–Vajda partition estimator is a strong consistency for the information dependency estimation of a bivariate random vector. This result is an extension of Silva and Narayananʹs (2010a,b) work which gives some simple conditions to confirm that the Gessamanʹs partition estimator and the tree-quantization partition estimator, other estimators in the class of data-dependent partition estimators, are strongly consistent.
Keywords :
Information dependency estimation , Kullback–Leibler divergence , Strongly consistent estimator , Darbellay–Vajda partition scheme , Lugosi and Nobel inequality , Data-dependent partition scheme , Gessamanיs partition scheme
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference