Title of article :
Conditional quantile estimation through optimal quantization
Author/Authors :
Charlier، نويسنده , , Isabelle and Paindaveine، نويسنده , , Davy and Saracco، نويسنده , , Jérôme، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2015
Pages :
17
From page :
14
To page :
30
Abstract :
In this paper, we use quantization to construct a nonparametric estimator of conditional quantiles of a scalar response  Y given a d -dimensional vector of covariates  X . First we focus on the population level and show how optimal quantization of  X , which consists in discretizing  X by projecting it on an appropriate grid of  N points, allows to approximate conditional quantiles of  Y given  X . We show that this approximation is arbitrarily good as  N goes to infinity and provide a rate of convergence for the approximation error. Then we turn to the sample case and define an estimator of conditional quantiles based on quantization ideas. We prove that this estimator is consistent for its fixed- N population counterpart. The results are illustrated on a numerical example. Dominance of our estimators over local constant/linear ones and nearest neighbor ones is demonstrated through extensive simulations in the companion paper Charlier et al. (2014).
Keywords :
Nonparametric regression , Optimal quantization , Quantile regression
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2015
Journal title :
Journal of Statistical Planning and Inference
Record number :
2222724
Link To Document :
بازگشت