Title of article :
Thrust kinematics and transposition fabrics from a basal detachment zone, eastern Australia
Author/Authors :
Gray، نويسنده , , David R.، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 1995
Pages :
18
From page :
1637
To page :
1654
Abstract :
Emplacement of an upper crustal, leading imbricate-fan thrust belt in the Lachlan Fold Belt of eastern Australia was accomplished along a 0.5–1 km thick zone of heterogeneously deformed, low grade phyllonite in pelitic rock. Continuous recrystallization and neocrystallization of mica in a zone of transposition layering has provided a weak zone at the base of a 100 km wide × 150 km exposed length × 10 km thick thrust system. The basal deformation zone is characterized by a low-moderately dipping, strong-intense transposition foliation enclosing elongate fault-bounded slices (up to 20 km long × 5 km wide in map view) of disrupted Cambrian metavolcanics and Upper Ordovician black shales and slates. These are derived from a structurally lower zone of duplexing or from the overturned limbs of anticlinorial structures. The detachment zone is a 10–15 km wide zone of intense deformation showing a transition from open, upright folds with weak cleavage to inclined, tightisoclinal folds with strong axial surface cleavage. The intensity of minor faults also increases into the zone. Leading imbricate fan thrust belts show maximum deformation effects along the basal detachment which forms the frontal or leading fault. The leading imbricate geometry is due to emplacement of the basal detachment zone up the lowest and last formed imbricate thrust. Movement is along a relatively ductile, low viscosity ‘layer’ at the base where strain softening occurs with development of transposition layering. This enables confined ‘flow’ along the basal zone with transport and emplacement of the fold system and duplex zone to higher structural levels. Reaction-enhanced ductility and grain boundary sliding may be important deformation mechanisms responsible for this flow. Localized polydeformation, marked by mesofolds and crenulation cleavage, reflects the interaction between thrust sheets and the movement on faults.
Journal title :
Journal of Structural Geology
Serial Year :
1995
Journal title :
Journal of Structural Geology
Record number :
2223954
Link To Document :
بازگشت