Title of article :
Homotopy perturbation solution and periodicity analysis of nonlinear vibration of thin rectangular functionally graded plates
Author/Authors :
Allahverdizadeh، نويسنده , , A. and Oftadeh، نويسنده , , R. and Mahjoob، نويسنده , , M.J. and Naei، نويسنده , , M.H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
11
From page :
210
To page :
220
Abstract :
In this paper nonlinear analysis of a thin rectangular functionally graded plate is formulated in terms of von-Karmanʹs dynamic equations. Functionally Graded Material (FGM) properties vary through the constant thickness of the plate at ambient temperature. By expansion of the solution as a series of mode functions, we reduce the governing equations of motion to a Duffingʹs equation. The homotopy perturbation solution of generated Duffingʹs equation is also obtained and compared with numerical solutions. The sufficient conditions for the existence of periodic oscillatory behavior of the plate are established by using Greenʹs function and Schauderʹs fixed point theorem.
Keywords :
FGM rectangular plate , Schauderיs fixed point theorem , Homotopy perturbation method , Nonlinear Vibration
Journal title :
Acta Mechanica Solida Sinica
Serial Year :
2014
Journal title :
Acta Mechanica Solida Sinica
Record number :
2228275
Link To Document :
بازگشت