Title of article :
Organic carbon amendments for passive in situ treatment of mine drainage: Field experiments
Author/Authors :
Lindsay، نويسنده , , Matthew B.J. and Blowes، نويسنده , , David W. and Condon، نويسنده , , Peter D. and Ptacek، نويسنده , , Carol J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
15
From page :
1169
To page :
1183
Abstract :
A field-scale experiment was conducted to evaluate various organic C sources as amendments for passive treatment of tailings pore water. Varied mixtures of peat, spent-brewing grain (SBG) and municipal biosolids (MB) were assessed for the potential to promote dissimilatory sulfate reduction (DSR) and metal-sulfide precipitation. Five amended cells and one control were constructed in the vadose zone of a sulfide- and carbonate-rich tailings deposit, and the geochemistry, microbiology and mineralogy were monitored for 4 a. Increases in pore-water concentrations of dissolved organic C (DOC) and decreases in aqueous SO4 concentrations of >2500 mg L−1 were observed in cells amended with peat + SBG and peat + SBG + MB. Removal of SO4 was accompanied by shifts in δ34S-SO4 values of >+30‰, undersaturation of pore water with respect to gypsum [CaSO4·2H2O], and increased populations of SO4-reducing bacteria (SRB). Decreases in aqueous concentrations of Zn, Mn, Ni, Sb and Tl were observed for these cells relative to the control. Organic C introduction also supported growth of Fe-reducing bacteria (IRB) and increases in Fe and As concentrations. Enhanced Fe and As mobility occurred in all cells; however, maximum concentrations were observed in cells amended with MB. Subsequent decreases in Fe and As concentrations were attributed to DSR and metal-sulfide precipitation. The common presence of secondary Zn-S and Fe-S phases was observed by field emission-scanning electron microscopy (FE-SEM) and energy dispersive X-ray (EDS) spectroscopy. Selective extractions indicated that large decreases in water-soluble SO4 occurred in cells that supported DSR. Furthermore, amendments that supported DSR generally were characterized by slight decreases in solid-phase concentrations of extractable metal(loid)s. Amendment of tailings with organic C amendments that supported ongoing DOC production and DSR was essential for sustained treatment.
Journal title :
Applied Geochemistry
Serial Year :
2011
Journal title :
Applied Geochemistry
Record number :
2232273
Link To Document :
بازگشت