Title of article :
Long-term simulation of the eutrophication of the North Sea: temporal development of nutrients, chlorophyll and primary production in comparison to observations
Author/Authors :
Pنtsch، نويسنده , , Johannes and Radach، نويسنده , , Günther، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Abstract :
The ecosystem model ERSEM II has been used to hindcast the development of the ecosystem of the North Sea during the years 1955 to 1993. The simulation was driven by the box-aggregated output from a general circulation model of the North Sea of corresponding duration; radiation, river inputs, atmospheric input and boundary conditions at the borders to the Atlantic Ocean and to the Baltic Sea were applied as realistically as possible. The general features of the eutrophication process are reproduced in the hindcast: the coastal areas show strong changes in nutrient concentrations in the hindcast as well as in the observations. Eutrophication not only shows up in the nutrient concentrations, but also in primary production. The simulated spatial distributions of phosphate, nitrate and primary production compare well with the observed ones. In addition, the hindcast simulates considerable trend-like changes of the nutrients in the southern part of the North Sea, where the nutrients are transported from the continental coastal strip to the southern central North Sea. The line from the river Humber to southern Norway separates the region of noticeable anthropogenic influence of riverine and atmospheric input from the northern area, which is mainly influenced by the Atlantic nutrient inflow. The observed annual cycles in the central and northern North Sea are quite well reproduced by the hindcast. The comparison of the hindcast with the long-term observations at two sites in the continental coastal zone of the North Sea shows that the long-term behaviour of phosphate, nitrate and silicate is simulated well. Primary production is increased in summers during the main period of eutrophication, 1975 to 1989, in the hindcast and in the observations. The flagellates at Helgoland, however, experience much more pronounced annual cycles with much less interannual variability in the hindcast than in the observations.
Keywords :
Long-term simulation , Nutrients , primary production , North Sea , ecosystem model , ERSEM , Eutrophication , Chlorophyll
Journal title :
Journal of Sea Research
Journal title :
Journal of Sea Research