Title of article :
A comparison of chemical mechanisms based on TRAMP-2006 field data
Author/Authors :
Chen، نويسنده , , Shuang and Ren، نويسنده , , Xinrong and Mao، نويسنده , , Jingqiu and Chen، نويسنده , , Zhong and Brune، نويسنده , , William H. and Lefer، نويسنده , , Barry and Rappenglück، نويسنده , , Bernhard and Flynn، نويسنده , , James and Olson، نويسنده , , Jennifer D. Crawford، نويسنده , , James H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
4116
To page :
4125
Abstract :
A comparison of a model using five widely known mechanisms (RACM, CB05, LaRC, SAPRC-99, SAPRC-07, and MCMv3.1) has been conducted based on the TexAQS II Radical and Aerosol Measurement Project (TRAMP-2006) field data in 2006. The concentrations of hydroxyl (OH) and hydroperoxy (HO2) radicals were calculated by a zero-dimensional box model with each mechanism and then compared with the OH and HO2 measurements. The OH and HO2 calculated by the model with different mechanisms show similarities and differences with each other and with the measurements. First, measured OH and HO2 are generally greater than modeled for all mechanisms, with the median modeled-to-measured ratios ranging from about 0.8 (CB05) to about 0.6 (SAPRC-99). These differences indicate that either measurement errors, the effects of unmeasured species or chemistry errors in the model or the mechanisms, with some errors being independent of the mechanism used. Second, the modeled and measured ratios of HO2/OH agree when NO is about 1 ppbv, but the modeled ratio is too high when NO was less and too low when NO is more, as seen in previous studies. Third, mechanism–mechanism HOx differences are sensitive to the environmental conditions – in more polluted conditions, the mechanism–mechanism differences are less. This result suggests that, in polluted conditions, the mechanistic details are less important than in cleaner conditions, probably because of the dominance of reactive nitrogen chemistry under polluted conditions.
Keywords :
Model intercomparison , Hydroxyl radical , chemical mechanisms , Hydroperoxy radical , atmospheric chemistry
Journal title :
Atmospheric Environment
Serial Year :
2010
Journal title :
Atmospheric Environment
Record number :
2236713
Link To Document :
بازگشت