Title of article :
The 1.90–1.88 Ga magmatism in the southernmost Guyana Shield, Amazonas, Brazil: Geology, geochemistry, zircon geochronology, and tectonic implications
Author/Authors :
Valério، نويسنده , , Cristَvمo da Silva and Souza، نويسنده , , Valmir da Silva and Macambira، نويسنده , , Moacir José Buenano، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
The southernmost Guyana Shield-Uatumã subdomain, northeastern Amazonas State, Brazil is dominantly formed by granitoid and volcanic rocks from the Água Branca Suite (ABS), undivided Granite Stocks (GS) and São Gabriel volcano–plutonic system (SGS). The ABS is characterized by a granite series that exhibits comparatively low Fe/(Fe + Mg) ratio, low (Nb/Zr)N, high Sr values and high Rb/Zr ratio. Its rocks display metaluminous to weakly peraluminous (A/CNK 0.94–1.06), high-K calc-alkaline, I normal-type character and have moderately to strongly fractionated rare earth elements (REE) pattern. The SG granites and SGS effusive–ignimbrite–granite association is metaluminous to weakly peraluminous (A/CNK 0.84–1.18), high-K calc-alkaline, has moderately to weakly fractionated REE trend, higher Fe/(Fe + Mg) ratio, lower Sr content and lower Rb/Zr ratio. The ABS geochemical signature is consistent with formation from volcanic arc rocks and small participation of collisional setting rocks, whereas the SG and SGS have post-collisional tectonic rocks-related geochemical signature. This model is in harmony with a post-collisional extensional regime, started with the 1.90–1.89 Ga Água Branca magmatism, and culminated with the 1.89–1.88 Ga São Gabriel system at an early stage of intracratonic reactivation, which included intrusion of mafic dikes. The Uatumã subdomain was related to mantle underplating with continental uplift and its origin involved contributions of 2.3–2.44 Ga Archean-contaminated Trans-Amazonian, 2.13–2.21 Ga Trans-Amazonian, 1.93–1.94/2.0 Ga Tapajós-Parima. Foliation styles point out that part of the Água Branca granitoids recorded later deformational effects, likely related to the Rio Negro Province formation.
Keywords :
Sمo Gabriel system , Guyana shield , Calc-alkaline rocks , Post-collisional uplift/extension , Zircon age
Journal title :
Journal of South American Earth Sciences
Journal title :
Journal of South American Earth Sciences