Title of article :
Sr–Nd constraints and trace-elements geochemistry of selected Paleo and Mesoproterozoic mafic dikes and related intrusions from the South American Platform: Insights into their mantle sources and geodynamic implications
Author/Authors :
Girardi، نويسنده , , V.A.V. and Teixeira، نويسنده , , W. and Mazzucchelli، نويسنده , , M. and Corrêa da Costa، نويسنده , , P.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
The study of selected mafic intrusions from cratonic areas of the South American Platform shows considerable differences among their mantle sources and geodynamic features, particularly regarding the dikes from the SW Amazonian and São Francisco Cratons. The tholeiites from the SW Amazonian Craton, which belong to the Serra da Providência Intrusive Suite (1.55 Ga), the Nova Lacerda swarm (1.44 Ga), the Colorado Complex (1.35 Ga), and the Nova Brasilândia Group (1.10 Ga), originated from a mantle source composed mainly of a N-MORB end-member, with a variable addition of slab fluids (up to 30%, according to the adopted model) from oceanic lithosphere due to episodic subductions during the Mesoproterozoic. Mafic intrusions from Nova Lacerda swarm and Colorado Complex are related to arc settings formed during the 1.47–1.35 Ga closure of the oceanic domain separating the Amazonian Craton and the Paraguá Terrane, whereas the tholeiites from the Serra da Providência Intrusive Suite and the Nova Brasilândia Group are considered intracratonic. The dike swarms of the São Francisco Craton are associated with intra-plate events. The inferred composition of the mantle source of the Lavras swarm (1.9 Ga) has a predominant E-MORB signature, and a modest contribution of up to 10% of an OIB component. The mantle composition underwent considerable changes during the Proterozoic, as indicated by the sources of the younger dikes, represented by the Diamantina (0.93 Ga) and the Salvador–Olivença swarms (0.92 Ga), to which considerable amount of slab derived fluids, probably from recycled crustal material, and OIB component were added. Changes in mantle composition and dikes intrusions could be related to the initial disruption of the Rodinia Supercontinent. The Florida (1.79 Ga) and Tandil (2.0 Ga) dikes are associated with extensional events of the Rio de La Plata Craton. In spite of the similarities between the tectonic framework of these swarms and that of Lavras (1.9 Ga), the composition of the Paleoproterozoic mantle of both cratons is very different. The parent mantle of the Florida dikes is more enriched and more heterogeneous than the others, probably due to the recycling of old crusts and OIB metasomatism. Isotopic data from the Tandil dikes also suggest an enriched original source, which could be a characteristic feature of the mantle of the Rio de La Plata Craton in Paleoproterozoic times. The Crixás–Goiás (2.49 Ga) swarm originated from a very heterogeneous mantle source, probably contaminated by OIB metasomatic fluids and crustal addition, suggesting that crustal recycling has occurred since Archean times.
Keywords :
Amazonian craton , Sمo Francisco craton , mantle composition , geochemistry , Mafic dikes , South American platform
Journal title :
Journal of South American Earth Sciences
Journal title :
Journal of South American Earth Sciences