Title of article :
Improvement of air quality forecasts with satellite and ground based particulate matter observations
Author/Authors :
Hirtl، نويسنده , , M. and Mantovani، نويسنده , , S. and Krüger، نويسنده , , B.C. and Triebnig، نويسنده , , G. and Flandorfer، نويسنده , , C. and Bottoni، نويسنده , , Sarang M. and Cavicchi، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
8
From page :
20
To page :
27
Abstract :
Daily regional scale forecasts of particulate air pollution are simulated for public information and warning. An increasing amount of air pollution measurements is available in real-time from ground stations as well as from satellite observations. In this paper, the Support Vector Regression technique is applied to derive highly-resolved PM10 initial fields for air quality modeling from satellite measurements of the Aerosol Optical Thickness. onally, PM10-ground measurements are assimilated using optimum interpolation. The performance of both approaches is shown for a selected PM10 episode.
Keywords :
MODIS AOT , Support vector regression , PM10 forecasts , WRF/Chem
Journal title :
Atmospheric Environment
Serial Year :
2014
Journal title :
Atmospheric Environment
Record number :
2242291
Link To Document :
بازگشت