Title of article :
Estimates of total ash content from 2006 and 2009 explosion events at Bezymianny volcano with use of a regional atmospheric modeling system
Author/Authors :
Moiseenko، نويسنده , , K.B. and Malik، نويسنده , , N.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
23
From page :
53
To page :
75
Abstract :
The December 24, 2006, and December 16, 2009, strong explosion events at Bezymianny Volcano (Kamchatka Peninsula) were accompanied by extensive ash-falls in proximal and medium–distal area (< 100 km) downwind following the direction of prevailing upper tropospheric winds. In the present study, we apply a limited area atmospheric modeling system RAMS6.0 and a lagrangian stochastic model HYPACT1.5 to predict local airflows in a mountain area around the volcano during these events and quantify effects of atmospheric dispersal, gravitational settling, and particle aggregation on the observed ash-fall deposit patterns. It was found that the orography-induced atmospheric disturbances provided first-order influence on ash dispersal regime in the events owing to enhanced turbulence rates in a free troposphere above mountains and low-level airflows generated by mesoscale pressure perturbations. A total mass of ash from these eruptions is inverted based on grain-size sample data and model-calculated Greenʹs function for atmospheric transport with use of a multiple regression approach. We demonstrate that in the absence of precise data on individual and collective settling rates the proposed inversion technique, which explicitly constrains fall velocity spectrum within individual sieve classes and aggregated modes, provides more reliable estimate for total erupted mass compared to procedures employing constant shape factor or prescribed settling rates within the framework of a simple linear regression model.
Keywords :
vulcanian eruption , Atmospheric ash dispersal , Ash-fall , Numerical simulation , Fine ash
Journal title :
Journal of Volcanology and Geothermal Research
Serial Year :
2014
Journal title :
Journal of Volcanology and Geothermal Research
Record number :
2249947
Link To Document :
بازگشت