Title of article :
Timescales of magmatic processes at Ruapehu volcano from diffusion chronometry and their comparison to monitoring data
Author/Authors :
Kilgour، نويسنده , , G.N. and Saunders، نويسنده , , K.E. and Blundy، نويسنده , , J.D. and Cashman، نويسنده , , K.V. and Scott، نويسنده , , B.J and Miller، نويسنده , , C.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
14
From page :
62
To page :
75
Abstract :
Recent eruptions from Mt. Ruapehu have been difficult to predict, despite the presence of a multi-parametric monitoring network. As a result, it is necessary to assess precursory signals prior to an eruption and align those to magmatic processes at depth. Fortuitously, scoria from all historical Ruapehu eruptions contains pyroxene crystals that are strongly reversely zoned in the form of a thin (2 to 3 μm), outermost rim. These crystals therefore preserved changes in the magmatic system soon before their eruption. We used experimentally determined diffusion coefficients to assess the timescales of magma–magma interaction, and compared those to the monitoring record. Four of the five eruptions analysed (1969, 1971, 1977, 1995) gave diffusion timescales ~ 3 to 5 months before their eruption, with an increased number of crystals recording timescales within 1 month of eruption. Pyroxene crystals from the 1996 eruption record events that occurred prior to and during the 1995 eruption suggesting that the bulk of the 1996 crystals was derived from the 1995 magma. These diffusion timescales do not compare well to a change in any monitoring signal before historical eruptions. However, an examination of recent seismicity (2005–2013) since a significant upgrade (both in number of stations and type of seismometers) showed that two phreatic eruptions in 2006 and 2007 were preceded by a seismic swarm from ~ 5 to 15 km depth, ~ 3 to 5 months before each eruption — consistent with the diffusion timescales. Based on this correlation, deep seismic swarms likely indicate a period of pressurisation in the magmatic system, which may lead to gas-rich, phreatic eruptions.
Keywords :
diffusion , pyroxene , phreatic , Ruapehu , Crater Lake , Monitoring
Journal title :
Journal of Volcanology and Geothermal Research
Serial Year :
2014
Journal title :
Journal of Volcanology and Geothermal Research
Record number :
2250369
Link To Document :
بازگشت